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Abstract

Cellular automata (CA) are computational models
in which simple rules applied to discrete states in a
grid produce complex emergent behavior. One well-
know 2-dimensional example is Conway’s Game
of Life, showing how a few basic rules can give
rise to intricate patterns and emergent structures.
However, 1-dimensional cellular automata, a sim-
pler variant where a string of bits updated itera-
tively according to local rules, also exhibit fascinat-
ing dynamics ranging from stable configurations to
chaotic, irreducible behaviors [7]. This project ex-
plores quantum cellular automata (QCA), a quan-
tum extension of 1D Cellular Automata, where cells
are represented by qubits, allowing for quantum
superposition and entanglement [2]. By introduc-
ing some quantum nature to these 1D systems, we
aim to investigate how quantum mechanics affects
emergent behaviors and information flow. Using in-
formation theory, particularly mutual information
and entanglement entropy, we measure correlations
to understand the differences between classical and
quantum systems. This approach allows us to as-
sess how quantum effects influence the evolution
of CA, potentially leading to unique behaviors and
patterns not seen in classical systems. Through this
examination, we seek to explore the role of quantum
mechanics in complex systems and its implications
for quantum information processing and computa-
tion.

1 Introduction

Before we proceed with our quantum modification,
we must first review the classical model which we
are modifying.

1.1 Elementary Cellular Automata

Elementary Cellular Automata (ECA) are a type of
1-dimensional cellular automaton defined by sim-
ple, deterministic rules that govern the evolution of
a linear array of bits. In ECA, each bit’s new state
is determined by its current state and the states
of its two immediate neighbors [7]. This leads to
eight possible neighborhood configurations (000 to
111), each mapped to a resulting bit in the next
step. Since each of these configurations can inde-
pendently produce either a 1 or a 0, there are 256

unique rules for evolving the system. These rules
vary widely in their behavior, ranging from sim-
ple repetition and stability to chaotic and complex
patterns. Rule 30, for example, is renowned for its
unpredictable, irreducible complexity, creating in-
tricate, seemingly random sequences from simple
initial conditions. This diversity in behavior makes
ECA a fascinating subject for studying emergent
phenomena, complexity, and computation within a
simple rule-based system.

Figure 1: The Elementary Cellular Automata
”Rule 30”. The 8 individual update rules are shown
above, and the evolution of the bit string start-
ing from one central on bit is shown with time
flowing down. Although the classical version is
entirely deterministic, the behavior is thought to
be irreducible and the central column is even used
for pseudo-random number generation in computer
language Mathematica [7].

1.2 Quantum Modification

We adjust the formulation of Elementary Cellular
Automata to allow for the initial conditions of each
cell to be in superposition, not just 1 or 0 but with
a state-vector anywhere on the Bloch sphere. We
translate the rules of the classical cellular automata
into the language of quantum gates, so that we can
evolve the system in time according to our rules.
We check that if we use our quantum rules on a
initial state with no superposition, we reproduce
the same result as the classical model, but when
we introduce superposition we find novel and excit-
ing behavior. Some configurations produce entirely
new patterns due to constructive or destructive in-
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terference. These systems are chaotic an unpre-
dictable by construction, and we cannot reasonably
uncover a generalized understanding of their behav-
ior, but we can examine certain well-defined prop-
erties like their degree of initial superposition or the
correlation between certain qubits in the output.

Figure 2: Side by side comparison of the same cel-
lular automata rule (rule 30), both in the classical
limit (left) where all cells have been initialized as
either 1 or 0, and in the quantum regime (right)
where some cells are initialized in superposition.
Notice the interference that occurs in the quantum
case. A series of vertical stripes is a stable pattern
for this rule which emerges in both cases due to the
boundary conditions of the small domain.

2 Techniques

2.1 Developing Quantum Rules

Translating the rules of Elementary Cellular Au-
tomata (ECA) into the quantum domain requires a
careful approach to preserve the system’s underly-
ing structure while incorporating quantum mechan-
ics. In classical cellular automata, the state of a cell
is influenced by the three-cell neighborhood in the
previous step. The quantum equivalent must cap-
ture this same principle, yet with quantum gates
and qubits. Due to the no coloning theorem, we
cannot simply duplicate and modify a register of
data, as is done in the classical case. Instead, we
initialize the quantum To implement the update

rule in a quantum cellular automaton, the triple-
controlled NOT (CCCNOT) gate is used. This gate
acts on a target qubit, flipping its state if and only
if all three control qubits are in the |1⟩ state. We
apply the CCCNOT gate using qubits representing
the previous state as the control, and with the tar-
get qubit representing the next state. In this way
we can create quantum cellular automata that re-
spect the same neighborhood-based logic as their
classical counterparts. This allows for the explo-
ration of quantum behaviors while maintaining the
fundamental rule structure that characterizes Ele-
mentary Cellular Automata.

Each of the sub-rules is independent so each of
the 8 possible neighborhood states is accounted for
and is implemented separately. Although a CCC-
NOT gate need only be applied for those sub-rules
which produce a |1⟩ in the next state as all qubits
in the later states are initialized as |0⟩ so sub-rules
which yield zero need not be calculated, which ac-
celerates computation.

Figure 3: Visual Representation of our time-
stepping methodology. All cells remain in super-
position and entangled until the very end.

2.2 Circuit Implementation

To track the evolution of a quantum cellular au-
tomaton (QCA), it is essential to maintain the com-
plete state information throughout the computa-
tion. The implementation described here utilizes
a unique qubit for each individual cell at each in-
dividual timestep, enabling us to record the entire
history of the QCA while avoiding state collapse
due to measurement. For instance if we have n
cells and m timesteps then we use n×m qubits to
simulate our entire system. This approach imposes
a constraint on the total number of timesteps that
can be implemented within a given qubit budget,
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Figure 4: Visualization of a much abridged quantum cellular automata, this shows Rule 30 carried out
on a length 3 qubit string over one timestep. Qubits 1,2,3 represent the initial timestep and qubits 4,5,6
represent the next step. Qubit 0 is an ancillary used for the CCCNOT gates. Note that measurements
occur only after the last operation on any given qubit.

but it provides a clear representation of the sys-
tem’s evolution from start to finish.
The measurement strategy is key to preserving

the quantum information throughout the compu-
tation. In this implementation, measurements are
conducted only at the end of the final timestep,
which prevents state collapse during intermediate
steps. This strategy enables the system to evolve
according to quantum principles, allowing for su-
perposition and interference without disruption. It
also facilitates a comprehensive representation of
the entire evolution, as measurements at the final
step capture the entire state history.
The initial state of the QCA plays a crucial role in

determining its evolution. By initializing all qubits
in the computational basis, either in the |0⟩ or |1⟩
state, the QCA reproduces the behavior of classical
elementary cellular automata. However, by initial-
izing certain qubits in superposition states, quan-
tum effects like interference become apparent. All
qubits are initialized as |0⟩ by default, but we can
introduce some superposition to them if we wish.
To study the behavior of these systems in detail,

we let the some cells begin in arbitrary superpo-
sition state between |0⟩ and |1⟩. Those we wish
to introduce superposition to we pass through a U
gate to transform them to the state:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ sin

(
θ

2

)
|1⟩ (1)

For some desired angle θ between |0⟩ and |1⟩.
For the most simple cases, we transform only the
center qubit in this way, but to explore more com-
plicated interference patterns we will initialize mul-
tiple qubits in superposition, each with their own
angle θ from |0⟩.

2.3 Quantifying Complex Behavior

Understanding and measuring the behavior of these
systems in a way which is generalized to work on
all states is difficult because these systems are com-
plex and sometimes irreducible by construction. To

do this in a way which is flexible and interpretable
for arbitrary rules and initial conditions, we adopt
a standardized traditional metric from information
theory called mutual information.

Mutual information describes how much informa-
tion on random variable contains about another. It
essentially quantifies how much measuring one ran-
dom variable reduces the uncertainty in another, or
how well two random variable correlate. It can be
calculated from a distribution of random samples
of the two random variables and in quantum set-
tings it can be used to account for the correlation
of random states [5, 1].

Mutual Information is defined in terms of an-
other well-known quantity known as Shannon En-
tropy. Shannon Entropy describes the uncertainty
(or ”surprise”) of a random variable, For many pos-
sible values x sampled from some probability dis-
tribution X, the Shannon Entropy of X is defined:

H(X) ≡ −
∑
x∈X

p(x) · log2(p(x)) (2)

Here, p(x) can be estimated from a sample distri-
bution. Because p(x) appears in the definition both
as a linear term and in a logarithm, the Shannon en-
tropy of a variable is 0 if the variable is not random
(ie. if it gives the exact same value every time it is
sampled). Likewise the Shannon entropy is maxi-
mized when the variable is entirely uncertain, with
equal probability of being any of multiple possible
values.

We define the Mutual information of two ran-
dom variables in terms of their individual and joint
Shannon Entropies:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (3)

Where H(X,Y ) is simply the Shannon Entropy
of X and Y combined. The Mutual information
is maximized if X and Y are statistically indepen-
dent, in other words if measuring X give you no
additional information about the state of Y .
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Substituting in the definition of Shannon En-
tropy we can see that:

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) · log2
(

p(x, y)

p(x) · p(y)

)
(4)

Where p(x, y) denotes the probability of getting
x and y simultaneously when sampling from distri-
butions X and Y. If x and y are independent then
p(x, y) is just p(x) · p(y) so the term in the loga-
rithm is 1 and the contribution to the Mutual in-
formation will be 0. Likewise mutual information is
maximized when x and y are always somehow corre-
lated. Therefore we can use this metric to quantify
the correlation of two of our qubits given a large
distribution of sampled from our circuit.
For simple cases of our cellular automata we will

sometimes wish to compare the mutual information
between two qubits (which describes their degree of
correlation) to some degree of superposition of some
qubit in the initial row of our cellular automata. To
quantify this degree of superposition we use the Von
Neumann Entropy [6], defined as:

S(ρ) = −Tr(ρ log ρ) (5)

Where ρ is the density matrix of a given state
vector |ψ⟩, calculated by:

ρ = |ψ⟩⟨ψ| (6)

If a state vector represents a pure state then this
metric should be zero as the density matrix will be
populated by only 1s and 0s. If we initialize a single
qubit in our first row in super position with some
angle θ away from pure state |0⟩ according to:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ sin

(
θ

2

)
|1⟩ (7)

And we initialize all other qubits in the first row
to a pure state, either |0⟩ or |1⟩, then the Von Neu-
mann Entropy of the first row is:

S = − sin2 θ · log
(
sin2 θ

)
− cos2 θ · log

(
cos2 θ

)
(8)

Where the degree of superposition is minimized
at θ = 0 or pi where |ψ⟩ = |0⟩ or |1⟩ and maxi-
mized at θ = π/2 where |ψ⟩ = |+⟩, as one would
expect. For cases like this where one one qubit is
in superposition, we expect the mutual information
to be related to the Von Neumann Entropy because
the only randomness available for any cells comes
from the same place so the cells should be max-
imally correlated (for example see fig 5). As we
allow multiple cells to be in superposition we ex-
pect the randomness to interfere and for cells to be
more decoherent.

Figure 5: The Mutual Information between the first
and last qubits as a function of the superposition
angle of the center qubit, plotted alongside the Von
Neumann Entropy of the initial state vector. This
data is from a family of runs of rule 30 where all
but the center qubit are initialized as |0⟩

3 Results

In exploring Wolfram’s rule space in the framework
of Quantum Cellular Automata, we focused on a
few rules well-known for their complex behavior
under classical rules. Complexity, as we explored
in Section 2.3, characterizes the emergent behavior
of the quantum system, which we can explore and
quantify, at least in part, with mutual information.
Due to a very narrow boundary on the space axis
of our 1-dimensional automata, we find emergent
behavior that is not a product of the superposition
that we intentionally set. This behavior is shown in
Figure 2, where in both the classical and quantum
cellular automata, we see that stable column struc-
tures evolved across the time dimension, which we
find stem from the boundary conditions we have
imposed. We chose such a slim grid because we
were limited by the number of qubits we needed
to initialize - our choice to record the full history
of the cellular automata at once required that we
initialized every single qubit across the time versus
space grid. This limit functionally meant that we
could only use 7 qubits across and 18 time steps
to watch the cellular automata evolve, since the
simulations became prohibitively expensive. How-
ever, in some cases where the 7 qubit limit meant
the mutual information (correlation) was hidden by
the dominant boundary condition interference pat-
terns, we were able to extend to a 9-qubit starting
condition that provided us with insightful visuals
on the complexity of the particular rule.
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3.1 9-qubit Simulations

We generated mutual information curves as a func-
tion of initial conditions for many different rules
and most showed absolutely zero correlation when
using 7 qubits, regardless of the superposed initial
conditions. In these cases, we chose to find one set
of initial conditions that could produce something
in the 9-qubit case by taking a very low-resolution
and thus very fast simulation of the behavior, and
then increasing resolution from there. Each of these
9-qubit simulations evolved for 18 time-steps for a
total 162 qubits we initialized at |0⟩ with the top
9 having an initial set of superposition described
below.

Figure 6: 9 qubit histories for two separate rules.
For Rule 30 (also shown alongside it’s classical
counterpart in Figure 2), we initialized its qubits
as follows - qubit 3 at π

2 , qubit 4 at −3π
4 , qubit 6 at

−3π
4 , and qubit 7 at π

2 . For Rule 90, we initialized
its qubits as - qubit 3 at π

4 , qubit 4 at π
2 , qubit 6

at 3π
4 , and qubit 7 at π

2 .

To quantify the complexity of each of these sys-
tems, we varied the center qubit from |0⟩ to |1⟩, and
held constant the initial superposition of the sur-
rounding qubits, finding the MI of each unique sys-
tem. Rule 30 seems to exhibit an exponential decay
of MI, where rule 90 almost follows the Von Neu-
mann Entropy shape of the Figure 5, albeit with a
different scale.

3.2 Rule 122

Rule 122, known for the checkerboard pattern it
displays as an ECA, proved the easiest to work with

Figure 7: The complexity of rule 30 and 90 with the
central qubit varying from |0⟩ to |1⟩ and the other
qubits held in the superposition as shown in Figure
6.

as it produced the most varied complexity behavior
with a 7-qubit initial state. This allowed me to use
the Python threading module to calculate the 7
systems shown in Figure 8 at once. Many of these

Figure 8: Mutual Information of the first and last
qubit of the 7-qubit system after 18 time steps. The
initial conditions surrounding the central qubit are
listed on each component graph.

systems appear to asymptote to a maximal MI of
1, where only one starts at a maximal MI and de-
creases as the center qubit goes to |1⟩, highlighting
the variety in complex emergent behavior that even
a single rule can produce.
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4 Discussion

We are seriously limited in the number of qubits
we can implement, this often results in stable pat-
terns like those seen in figure 2 which result from
interaction with the boundary. All boundaries are
treated as if they are zero, but themselves cannot
be updated so they produce a kind of artificially
stable pattern which dominates the behavior espe-
cially at late time. To get around this, future work
could employ periodic boundary conditions or ex-
plore other implementations which do not track the
entire history and can therefore use more qubits for
the automata’s width. The overwhelming number
of qubits needed for our original implementation
also imposes a barrier toward implementing more
sophisticated metrics, such as quantum information
[3] and quantum discord [4]. We attempted to im-
plement such metrics but quickly discovered that
they required petabytes of memory to be deployed
on our 128-qubit circuit. This provides further mo-
tivation to explore more efficient implementations
which do not require as many qubits.
Implementations of this type are complicated as

a result of the no-cloning theorem. A single row
of qubits representing the 1D automata cannot be
used alone as the updates could not occur simulta-
neously without disrupting the state. But perhaps
two rows of qubits could be used and alternated
between. Or, in special cases, the entire update
rule could be encapsulated in a single (very large)
unitary operator which could be applied repeatedly
to simulate the timestepping. Such an implemen-
tation would only contain information about the
final row when measured but could be run for an
arbitrary number of timesteps. We suggest that a
QCA circuit of this nature could be used to greater
effect as it could be much wider and therefore not
suffer from edge effects as immediately and because
the smaller memory footprint would allow for the
efficient employment of more informative metrics.
We also suggest the possibility of measuring the
phase of the cellular automata or even developing
an expanding family of rules using Hadamard gates
in addition to X’s to introduce even more diverse
behavior.

5 Conclusion

We have explored a novel approach to implement-
ing famous classical cellular automata rules in a
quantum framework. We developed an algorithm
which can translate the classical rules into a quan-
tum circuit is a generalized and flexible way. We
demonstrate that our method reproduces expected
classical behavior when fed classical inputs but can
produce new and intriguing phenomena when ini-
tialized in superposition.

We explore the space of possible rules and initial
conditions and find that the diversity of classical
cellular automata is expanded into an entirely new
direction of superposition and quantum interfer-
ence. We explore the correlation of separate qubits
as a function of initial conditions and find hints
of tractable behavior but as of yet have no under-
standing of their nature other than that they are
very diverse and unpredictable!
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